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Laminar natural convection in an inclined complicated cavity
with spatially variable wall temperature
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Abstract

Natural convection in two-dimensional enclosure with three flat and one wavy walls is numerically investigated. One

wall is having a sinusoidal temperature profile. Other three walls including the wavy wall are maintained at constant

cold temperature. This problem is solved by SIMPLE algorithm with deferred QUICK scheme in curvilinear co-ordi-

nates. The tests were carried out for different inclination angles, amplitudes and Rayleigh numbers while the Prandtl

number was kept constant. The geometrical configurations considered were namely one, two and three undulations.

The results obtained show that the angle of inclination affects the flow and heat transfer rate in the cavity. With

increase in amplitude, the average Nusselt number on the wavy wall is appreciably high at low Rayleigh number.

Increasing the number of undulations beyond two is not beneficial. The trend of local Nusselt number is wavy.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The natural convection process has developed con-

siderable importance because of its relevance to heat

transfer in many engineering applications. These are

cooling of electronic components, heating and cooling

of rooms, solar heaters, crystal growth, glass melting

to name a few of them. Since the velocity and the tem-

perature equations are coupled due to the buoyancy

force, the study of natural convection is very complex.
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When in an enclosure, the two vertical walls are dif-

ferentially heated and the horizontal top and bottom

walls are maintained under adiabatic conditions, a fluid

flow is developed because of the horizontal temperature

difference DTH. The density difference gradient (i.e. tem-

perature difference gradient) is horizontal and the grav-

ity vector acts perpendicularly. These two vectors act

normal to each other and the direction of the circulation

depends upon their orientation. However, the situation

becomes more complex when these two vectors are par-

allel to each other. When the bottom wall is heated and

the top wall is cooled, i.e. there is a vertical temperature

difference DTV, the density increases from bottom to

top. These two vectors (i.e. density gradient and gravity)

are parallel and opposite to each other. In this case the

circulation will start after a critical Rayleigh number is

reached (Bénard convection). In the case of top wall
ed.
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Nomenclature

g gravitational acceleration

H height of the enclosure

J Jacobian

Nu Nusselt number Nuav average Nusselt

number ¼ 1
s

R s
0
Nul ds

Numax the maximum value of local Nusselt number

on the boundary at x = 0

Numin the minimum value of local Nusselt number

on the boundary at x = 0

p dimensionless pressure

Pr Prandtl number

P,Q grid control functions

Ra Rayleigh number = gbDTH3/(ma)
T dimensionless temperature

DT differential temperature, dimensionless

u,v dimensionless velocity components in x and

y direction

U,V dimensionless contravariant velocity com-

ponents in n and g direction

umax the maximum horizontal velocity on the

vertical mid plane of the cavity

vmax the maximum vertical velocity on the hori-

zontal mid plane of the cavity

x,y dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity

/ inclination angle

# general variable representing u, v and T

n, g dimensionless curvilinear coordinates

k wave amplitude

Subscripts

c,h cold wall and hot wall

H horizontal

V vertical

w wall

x,y derivative relative to x, y, respectively

n,g derivative relative to n, g, respectively

Superscript

* dimensional form
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being heated and the bottom wall being cooled, the den-

sity increases from top to bottom. The two vectors are

parallel and acting in the same direction. The fluid is

thermally stratified and there will be no circulation in

this case.

In an enclosure, if the four walls are either heated or

cooled, there will exist a DTH and DTV. By choosing a

proper DTH and DTV, it is possible to generate two cir-

culations of opposite direction inside the enclosure. This

method can be used to control the fluid circulation in-

side the enclosure. The situations will change in the case

of tilted enclosure.

The natural convection process inside a rectangular

enclosure has been studied extensively for the last four

decades. Ostrach [1] has given a review of the history

and developments of such heat transfer process with

the inception of natural convection as a research topic.

The heat transfer process is dominated by conduction

when the Rayleigh number is low. With the increase of

Rayleigh number, thermal boundary layer forms adja-

cent to the wall and a core region is formed. The heat

transfer is then dominated by convection. It is the inter-

action of this core region with the boundary layer that

makes the understanding of the heat transfer process

very complex. Depending upon the aspect ratio

(height/width), the fluid flow pattern will change with

the variation in Rayleigh number.

Two dimensional experimental studies or numerical

solutions inside a differentially heated rectangular enclo-
sure tilted at different angles have been carried out under

various conditions. During the last decade, the subject of

natural convection in inclined cavities has been extended

by additional variations. Research has been done on the

influence of change in geometry and on changes in the

boundary conditions.

An enclosure with corrugated bottom surface main-

taining a uniform heat flux and flat isothermal cooled

top surface and side walls adiabatic was studied by

Noorshahi [2]. The results show that the pseudo-conduc-

tion region is increased with increase of wave amplitude.

The natural convection heat transfer in a two-dimen-

sional rectangular enclosure fitted with a periodic array

of hot roughness elements at the bottom has been inves-

tigated numerically [3]. Bottom surface is heated and the

right vertical wall is cooled and the other walls are adi-

abatic. Increase in heat transfer is obtained when the

roughness element phase shift is equal to half its period.

The increment in heat transfer is found to be more sig-

nificant for enclosures with higher values of roughness

element amplitude.

Yao [4] has studied theoretically the natural convec-

tion along a vertical wavy surface. He found that the

local heat transfer rate is smaller than that of the flat

plate case and decreases with increase of the wave ampli-

tude. The average Nusselt number also shows the same

trend. Adjlout et al. [5] reported a numerical study of

the effect of a hot wavy wall in an inclined differentially

heated square cavity. Tests were performed for different
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inclination angles, amplitudes and Rayleigh numbers for

one and three undulations. The trend of the local heat

transfer is wavy. The mean Nusselt number decreases

comparing the square cavity.

The effect of non-uniform temperature distribution

on an inclined three-dimensional enclosure has been

studied by Chao et al. [6]. Bottom wall is maintained

at a saw-toothed temperature distribution with different

amplitude and orientation while top wall is isothermal

and other faces are adiabatic. The circulation pattern

did not change significantly with the temperature distri-

butions. The Nusselt number does not change signifi-

cantly with inclination. Chao et al. [7] in another study

considered half of the bottom surface heated and the

top surface cooled, while half of the bottom surface

and other vertical surfaces were adiabatic. The observed

and predicted patterns of circulation are found to be in

good agreement. A numerical study of natural convec-

tion in an enclosure was investigated where the heated

wall of the enclosure is divided into two higher and low-

er temperature regions and the temperature of the cold

wall is maintained at a constant [8]. The results show

that the local Nusselt number distribution varies drasti-

cally at the intersection of the higher and lower temper-

ature regions, and the flow is strongly affected by the

above two parameters.

Convective motion in a square cavity with linearly

varying temperature imposed along the top surface has

been investigated numerically by Shukla et al. [9]. The

side and bottom walls of the rigid cavity are assumed

to be insulated. For low Rayleigh number, a single con-

vective cell is formed. With increase in Rayleigh number,

flow and temperature fields become asymmetric. The

temperature field is generally stratified with lower part

of cavity relatively isothermal. Oosthuizen and Paul

[10] considered an enclosure with side wall partially

heated and top wall cooled. In another study, Oosthui-

zen [11] considered an enclosure with bottom surface

heated and the top surface is inclined and maintained

at uniform cold temperature. The temperature of the

side walls varies in a prescribed way between the bottom

and the top wall temperatures. The proposed system is

found in crop drying applications such as corn and rice.

The top surface inclination has been varied between 0�
and 45�, aspect ratio 0.25 and 1 and Rayleigh number

103 and 107. The effect of changes in governing parame-

ters on flow pattern and mean heat transfer rate to the

upper surface has been studied. Heating from the top

wall leads to thermal stratification. However, if the tem-

perature imposed has a sinusoidal distribution, two cells

counter rotating will be formed. This kind of heating is

found in glass technology. In a study carried out by Sar-

ris et al. [12], the top wall is periodically heated while the

side walls and the bottom wall are adiabatic. This en-

sures that the top wall controls the flow. The thermal

boundary layer is confined near the top wall. The values
of maximum and minimum Nusselt number is shown to

increase with increase of Rayleigh number.

From the above literature survey, the following

observations are made. Though a large amount of liter-

ature is available on studies concerning rectangular and

non-rectangular geometry, not much focus has been gi-

ven on natural convection in enclosures with vertical

wavy wall. It has been found that in most of the cases,

the walls are differentially heated either in the horizontal

or in the vertical directions. Problems concerning the

simultaneous imposition of these two types of boundary

conditions are rare in the literature. Again, it has been

found that temporally varying boundary conditions

(not mentioned here) are present in the literature,

whereas spatially varying boundary conditions have

not been given much importance.

In the present study, a natural convection problem

has been solved in a square enclosure having three flat

walls and the wavy vertical wall consisting of one, two

and three undulations of varying amplitudes. The two

vertical walls and the bottom wall are maintained at a

fixed lower temperature. The top wall is heated with

sinusoidally varying temperature distribution in the

space coordinate. Air has been taken as the working

fluid (Pr = 0.71). The study has been conducted at differ-

ent inclination of the enclosure from 0� to 360� in steps

of 30�.

1.1. Problem specification

The problem considered is a two-dimensional heat

transfer in a square cavity with wavy right vertical wall

filled with viscous fluid. The upper wall temperature is

considered to be spatially varying with sinusoidal

temperature distribution, T �
wðx�Þ. The other three walls

are considered to be of constant temperature, T �
c . The

temperature distribution on the top wall is as follows

[12]:

T �
wðx�Þ ¼ T �

c þ
DT �

2
1� cos

2px�

H

� �� �
ð1Þ

where T �
c is the minimum value of the imposed temper-

ature distribution, DT* is the temperature difference

between the maximum and the minimum temperatures

of the upper wall, and H is the length of the square

enclosure. The above equation can be written in the

dimensionless form (Eq. (4)) as follows and the dimen-

sionless temperature distribution of the top wall is

shown in Fig. 1:

T wðxÞ ¼
1

2
ð1� cosð2pxÞÞ ð2Þ

The shape of the wavy vertical wall is taken as sinu-

soidal. The expression of the wavy wall is given by

f ðyÞ ¼ ½1� kþ kðcos 2pnyÞ� ð3Þ



Fig. 2. Geometrical details of the cavity.

Fig. 1. Imposed temperature distribution (dimensionless) on

the heated surface.
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where n is the number of undulations and k is the ampli-

tude [5]. Three different cases with one, two and three-

undulation are studied. The amplitude for all three cases

have been varied from 0.01 to 0.10 in steps of 0.01. The

Rayleigh number is varied from 10� to 106. Prandtl num-

ber is fixed to be 0.71. Fig. 2 shows the geometrical fea-

tures of the cavity.
2. Governing equations and boundary conditions

Natural convection is governed by the differential

equations expressing the conservation of mass, momen-

tum, and energy. The present flow is considered steady,

laminar, incompressible and two dimensional. The vis-
cous dissipation term in the energy equation is ne-

glected. The momentum equations are simplified

using Boussinesq approximation, in which all fluid

properties are assumed constant except the density in

its contribution to the buoyancy force. The governing

equations and the boundary conditions are cast in

dimensionless form using the following dimensionless

variables:

x ¼ x�

H
; y ¼ y�

H
; u ¼ u�H

a
; v ¼ v�H

a
;

p ¼ p�H 2

qa2
; T ¼ T � � T �

c

DT � ð4Þ

Continuity equation:

ou
ox

þ ov
oy

¼ 0 ð5Þ

u-momentum equation:

oðu2Þ
ox

þ oðuvÞ
oy

¼ � op
ox

þ Pr
o2u
ox2

þ o2u
oy2

� �
� RaPrT cos/

ð6Þ

v-momentum equation:

oðuvÞ
ox

þ oðv2Þ
oy

¼ � op
oy

þ Pr
o2v
ox2

þ o2v
oy2

� �
þ RaPrT sin/

ð7Þ

Energy equation:

oðuT Þ
ox

þ oðvT Þ
oy

¼ o2T
ox2

þ o2T
oy2

ð8Þ

In addition, the velocity and temperature boundary

conditions, take the following form:

u ¼ v ¼ T ¼ 0 for x ¼ 0; 1 and 0 6 y 6 1 ð9aÞ

u ¼ v ¼ T ¼ 0

for x ¼ f ðyÞ ¼ ½1� kþ kðcos 2pnyÞ� and 0 6 y 6 1

ð9bÞ

u ¼ v ¼ T ¼ 0 for y ¼ 0 and 0 6 x 6 1 ð9cÞ

u ¼ v ¼ 0 and T ¼ 1

2
ð1� cosð2pxÞÞ

for y ¼ 1 and 0 6 x 6 1 ð9dÞ
2.1. Transformation of the governing equations

The governing equations transformed from the

Cartesian system (x,y) to the boundary-fitted coordinate

system (n,g) are given by [13,14]

Continuity equation

U n þ V g ¼ 0 ð10Þ
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Generalised momentum and energy equations

ðU#Þn þ ðV #Þg ¼ Sðn; gÞ þ C
J
ða#n � b#gÞ

� �
n

þ C
J
ð�b#n þ c#gÞ

� �
g

ð11Þ

where C = Pr for the momentum equations and C = 1

for the energy equation. The source term S(n,g) is given
by

Sðn; gÞ ¼ �ygpn þ ynpg for # ¼ u ð12aÞ

Sðn; gÞ ¼ xgpn � xnpg þ JRaPrT for # ¼ v ð12bÞ

Sðn; gÞ ¼ 0 for # ¼ T ð12cÞ

The relationships between the Cartesian and contra-

variant velocity components are

U ¼ ygu� xgv; V ¼ xnv� ynu ð13Þ

The boundary conditions given in Eq. (9) are Dirich-

let type. The boundary conditions on the computational

plane can be written as follows:

u ¼ v ¼ T ¼ 0 for n ¼ 0; 1 and 0 6 g 6 1 ð14aÞ

u ¼ v ¼ T ¼ 0 for g ¼ 0 and 0 6 n 6 1 ð14bÞ

u ¼ v ¼ 0 and T ¼ 1

2
ð1� cosð2pxÞÞ

for g ¼ 1 and 0 6 n 6 1 ð14cÞ

The heat transfer rate by convection in an enclosure is

obtained from the Nusselt number calculation. The local

Nusselt Nul numbers on the four walls are expressed as

Top wall Nul ¼
1

J
ffiffiffi
c

p ðcT g � bT nÞ ð15aÞ

Right wall Nul ¼
1

J
ffiffiffi
c

p ðaT n � bT gÞ ð15bÞ

Bottom wall Nul ¼ � 1

J
ffiffiffi
c

p ðcT g � bT nÞ ð15cÞ

Left wall Nul ¼ � 1

J
ffiffiffi
c

p ðaT n � bT gÞ ð15dÞ

The average Nusselt number is the average of local

Nusselt number along a wall and is defined by the fol-

lowing equation:

Nuav ¼
1

s

Z s

0

Nul ds ð16Þ
X
0 0.25 0.5 0.75 1
0

0.1

(c)

Fig. 3. Mesh distribution in the cavity for one, two and three

undulations.
2.2. Grid generation

Numerical grid generation has now become a fairly

common tool for use in the numerical solution of partial
differential equations on arbitrarily shaped regions. The

coordinate transformation technique advanced by

Thompson et al. [15] is used for the solution of problems

over complex geometries. The transformation is ob-

tained from the solution of partial differential equations

on the regular computational domain. Mapping is done

to convert the regions having irregular shape (physical

domain) into the computational domain where the

geometry becomes regular (computational domain) with
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a suitable transformation. A curvilinear mesh is gener-

ated over the physical domain such that one member

of each family of curvilinear coordinate lines is coinci-

dent with the boundary contour of the physical domain

[16]. The Navier–Stokes equations are then solved on

the transformed plane and the solution is back-trans-

formed to the physical plane. The transformation is as

follows:

n � nðx; yÞ; g � gðx; yÞ ð17Þ

and the inverse transformation is given by

x � xðn; gÞ; y � yðn; gÞ ð18Þ

The mapping to the body fitted coordinate system is

constructed by specifying the desired points (x,y) on the

boundary of the physical domain. The distribution of

points on the interior is determined by solving a system

of Poisson equations:

nxx þ nyy ¼ Pðn; gÞ ð19Þ

gxx þ gyy ¼ Qðn; gÞ ð20Þ

Eqs. (19) and (20) are then transformed to computa-

tional space by interchanging the roles of the indepen-
Fig. 4. Grid independence test: Comparison of local Nu on the right w

Ra = 104, three undulations, wavy wall, / = 90�, (c) for Ra = 106, on

undulations, wavy wall, / = 90�.
dent and dependent variables. This yields a system of

two equations of the form

dxnn � 2bxng þ cxgg þ J 2ðPxn þ QxgÞ ¼ 0 ð21Þ

dynn � 2byng þ cygg þ J 2 Pyn þ Qyg
� �

¼ 0 ð22Þ

where the geometric coefficients d, b, c and the Jacobian

are given by

d ¼ x2g þ y2g ð23aÞ

b ¼ xnxg þ ynyg ð23bÞ

c ¼ x2n þ y2n ð23cÞ

J ¼ xnyg � xgyn ð23dÞ

P and Q are functions that provide control of the

mesh concentration. The values of P and Q have to be

chosen depending on the clustering of the grid required

for the problem in hand. The transformed Eqs. (21) and

(22) are discretized over the computational plane using

second-order differencing and then solved numerically.

The coefficients in Eq. (23) are computed at each grid
all. (a) For Ra = 104, one undulation, wavy wall, / = 90�, (b) for
e undulation, wavy wall, / = 90�, and (d) for Ra = 106, three
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point. For the present study, the grid used are shown in

Fig. 3(a)–(c).
Table 1

Comparison of solutions for natural convection in an enclosed

cavity

a b c d a�d
a � 100

(a) Ra = 103

umax 3.649 3.544 3.544 3.660 �0.3015

y 0.813 0.832 0.814 0.725

vmax 3.697 3.593 3.586 3.706 �0.2434

x 0.178 0.168 0.186 0.258

Numax 1.505 1.496 1.540 1.491 0.9302

y 0.092 0.0825 0.142 0.125

Numin 0.692 0.720 0.727 0.670 0.3179

y 1.0 0.9925 0.991 0.991

(b) Ra = 104

umax 16.178 16.18 15.995 16.292 �0.7047

y 0.823 0.832 0.814 0.742

vmax 19.617 19.44 18.894 19.744 0.6474

x 0.119 0.113 0.103 0.192

Numax 3.528 3.482 3.84 3.5050 �0.7936

y 0.143 0.1425 0.141 0.158

Numin 0.586 0.643 0.670 0.569 �2.90

y 1.0 0.9925 0.991 0.991

(c) Ra = 105

umax 34.73 35.73 37.144 34.992 �0.7544

y 0.855 0.857 0.855 0.775

vmax 68.59 69.08 68.91 68.79 �0.2916

x 0.066 0.067 0.061 0.125

Numax 7.117 7.626 8.93 7.582 �6.534

y 0.081 0.0825 0.080 0.091

Numin 0.729 0.824 1.01 0.701 3.841

y 1.0 0.9925 1.0 0.991

(d) Ra = 106

umax 64.63 68.81 66.42 64.99 �0.5605

y 0.850 0.872 0.897 0.775

vmax 217.36 221.8 226.4 221.27 �1.7988

x 0.0379 0.0375 0.0206 0.075

Numax 17.925 17.872 21.41 20.04 �11.7992

y 0.0378 0.0375 0.030 0.025

Numin 0.989 1.232 1.58 0.916 �7.3811

y 1.0 0.9925 1.0 0.991

(a) Solution of de Vahl Davis [21]; (b) solution of Markatos and

Perikleous [22]; (c) solution of Hadjisophocleous et al. [23]; (d)

present solution on 61 · 61 grid.
3. Numerical procedure

The governing equations are discretized on a struc-

tured grid. The velocity components and the scalar vari-

ables (pressure, temperature) are located on the grid in a

staggered manner. The governing equations are solved

numerically by finite volume method. The semi implicit

method for pressure linked equation (SIMPLE) [17] is

used to couple momentum and continuity equations.

The deferred QUICK scheme of Hayase et al. [18] is em-

ployed to minimize numerical diffusion for the convec-

tive terms for both the momentum equations and

energy equation. The central difference scheme of Patan-

kar [17] is employed near the boundary points for the

convective terms. The solution of the discretized

momentum and pressure correction equation is obtained

by line-by-line method [17]. The pseudo-transient

approach is followed for the numerical solution as it is

useful for situation in which the governing equations

give rise to stability problems, e.g. buoyant flows [19].

Under-relaxation factor for pressure with values of

0.01 was used.

The iterative procedure is initiated by the solution of

energy equation followed by momentum equations and

is continued until convergence is achieved. Euclidean

norm of the residual is taken as convergence criteria

for each dependent variable in the entire flow field

[20]. The mass balance for global convergence was taken

as 10�8. The calculations were performed on Pentium

III, 128 RAM machine.

3.1. Grid independence study of the problem concerned

The grid independence test is performed using succes-

sively sized grids, 21 · 21, 41 · 41, 61 · 61 and 81 · 81

for Ra = 104 and 106, k = 0.05 and / = 90�. The distribu-
tion of local Nusselt number at wavy wall for one and

three undulations are shown in Fig. 4(a) and (b), respec-

tively when Ra = 104 whereas for R = 106, they are

shown in Fig. 4(c) and (d), respectively. It is observed

that the curves overlap with each other for 61 · 61 and

81 · 81. So a grid number of 61 · 61 is chosen for fur-

ther computation.

3.2. Code validation

The present code is validated for natural convection

heat transfer by comparing the results of a buoyancy

driven laminar heat transfer in a square cavity with dif-

ferentially heated side walls. The left wall was kept hot

while the right wall was cooled. The top and bottom

walls are insulated. In the present work numerical pre-
dictions, using the developed algorithm, have been ob-

tained for Rayleigh numbers between 103 and 105 on

elliptic mesh with 61 · 61 grid points.

Table 1 compares the results with those by de Vahl

Davis [21], Markatos and Perikleous [22] and Had-

jisophocleous et al. [23]. The results are in very good

agreement with the benchmark solution, especially for

the lower Rayleigh numbers. At higher Rayleigh num-

bers more points are needed close to the vertical walls

for an accurate evaluation of the wall temperature gradi-

ent [23].
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4. Results and discussion

A parametric study was carried out to determine the

influence of inclination angle (/), Ra, amplitude (k) and
number of undulations on the flow field of air. Inclina-

tion angle (/) was considered in the range of 0–360� in
steps of 30� to obtain the inclination. The Ra was varied

between 10� and 106 to cover a large range. The influ-

ence of the amplitude (k) was examined for the values

in between 0.01 and 0.1. All these cases were computed

for one, two and three undulations.
Fig. 5. Streamtraces for Ra = 105, k = 0.05. One undulation c
4.1. Streamtraces and isotherms

Figs. 5–10 show the steamtraces and isotherms for

Ra = 105 and k = 0.05. The action of the gravity vector

is shown by arrow. For / = 0� (Fig. 5(a)), there is mainly

one cell encompassing the complete domain with an ex-

tremely small one at one corner. The main flow is ob-

served to be in the counter clockwise direction because

the sinusoidally varying temperature is on the right side

of the gravity vector. Similar trend is obtained for two

wave and three waves cases (Figs. 7(a) and 9(a)). The
ase / increasing from (a) 0� to (l) 330� in steps of 30�.



Fig. 6. Isotherms for Ra = 105, k = 0.05. One undulation case / increasing from (a) 0� to (l) 330� in steps of 30�.
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inner streamtraces are pushed towards the corner which

is depicted as C in Fig. 2. Because of the sinusoidally

varying temperature distribution, the location A and C

are cold and B is hot (Fig. 2). The circulation is setting

in because the hot fluid B is raising up displacing cold

fluid at C and thus a counter clockwise flow is occurring.

For / = 180�, the heated wall is on the left hand side of

the gravity vector and a clockwise rotation is taking

place.
In both the cases, the inner rotating cell is cusped to-

wards the end of the heated wall opposite to the gravity

vector. Unlike the case of a differentially heated side

walls and other two insulated horizontal walls [21], for

Ra = 105, only one rotating cell inside the core is ob-

served for these two cases.

For / = 90� (Figs. 5(d), 7(d) and 9(d)), the conditions

are somewhat similar to the problem studied by Sarris

et al. [12]. In their problem, the top wall had a sinusoi-
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dally varying temperature and other three walls are adi-

abatic. The gravity vector was acting from top to bottom

wall. Since the temperature is varying on the top wall, we

are getting a DTV which is varying in the x-direction. So

in spite of DTV parallel to the gravity vector and the top

surface is hot, a circulation is set in instead of a thermally

stratified medium. Two counter rotating cells (one coun-

ter clock wise and another clock wise) are formed. Here

also the inner of the two rotating cells are directed to-
Fig. 7. Streamtraces for Ra = 105, k = 0.05. Two undulation
wards the end points of the heated wall. When the direc-

tion of the gravity vector is reversed, i.e. / = 270� (Figs.
5(j), 7(j) and 9(j)), a similar trend is noticed. There is a

formation of two counter rotating vortices. But the direc-

tion of rotation is interchanged.

The origin of this phenomenon is due to the sinusoi-

dally varying boundary temperature and the orientation

angle (/). It can be observed that small vortices are

formed next to the wavy walls, / = 30�, (Figs. 5(b),
case / increasing from (a) 0� to (l) 330� in steps of 30�.
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7(b) and 9(b)) which grow in larger size for / = 60�
(Figs. 5(c), 7(c) and 9(c)) and coalesce to form a rotating

cell when / = 90� (Figs. 5(d), 7(d) and 9(d)). With fur-

ther increase in angle of rotation / = 120�, this cell

grows bigger in size and squeezes the other cell (Figs.

5(e), 7(e) and 9(e)). The point to be noted is that, the

core of the other cell breaks down in two small cells.

For / = 150�, this cell has grown in such a size that

the other cell has disappeared (Figs. 5(f), 7(f) and 9(f))
Fig. 8. Isotherms for Ra = 105, k = 0.05. Two undulation ca
and for / = 180�, this cell completely covers the whole

domain (Figs. 5(g), 7(g) and 9(g)).

Same sequence of phenomena is observed at / = 210�
(Figs. 5(h), 7(h) and 9(h)), 240� (Figs. 5(i), 7(i) and 9(i)),

270� (Figs. 5(j), 7(j) and 9(j)), 300� (Figs. 5(k), 7(k) and
9(k)) and 330� (Figs. 5(l), 7(l) and 9(l)). So it can be said

that periodically vortices are formed from the wavy

wall and finally disappearing to the opposite flat wall

for various angle of rotation.
se / increasing from (a) 0� to (l) 330� in steps of 30�.
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For high Ra (105 and above) advection is the mode

of heat transfer neat the heated wall [12]. The similar

feature is noted in the present problem for / = 90� (Figs.
6(d), 8(d) and 10(d)). The isotherms concentrate near the

heated wall and heat transfer is high. However, half of

the domain is very cold (T below 0.05) signifying the

heat is unable to penetrate into this region. For /
= 270� (Figs. 6(j), 8(j) and 10(j)), heat is advected

throughout the region resulting in a distribution of the
Fig. 9. Streamtraces for Ra = 105, k = 0.05. Three undulation
isotherms. We do not have a central core region in

general.

The effect of angle of orientation on the isotherms

and convection are given in the following plots. For /
= 0� (Figs. 6(a), 8(a) and 10(a)), the isotherm spread well

over the domain. They gradually shift towards the

heated wall for / = 30� (Figs. 6(b), 8(b) and 10(b)) and

/ = 60� (Figs. 6(c), 8(c) and 10(c)). The opposite

phenomena occur when / is further increased. The
case / increasing from (a) 0� to (l) 330� in steps of 30�.



Fig. 10. Isotherms for Ra = 105, k = 0.05. Three undulation case / increasing from (a) 0� to (l) 330� in steps of 30�.
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isotherms spread gradually from the top wall for /
= 120� (Figs. 6(e), 8(e) and 10(e)) and / = 150� (Figs.

6(f), 8(f) and 10(f)). For these cases, the isotherms are

densely packed near the wavy wall. The isotherms are

well distributed for / = 2100 (Figs. 6(h), 8(h) and

10(h)) and / = 240� (Figs. 6(i), 8(i) and 10(i)). For /
= 300� (Figs. 6(k), 8(k) and 10(k)) and / = 33� (Figs.

6(l), 8(l) and 10(l)) the isotherms are closer to each other

near the opposite wavy wall.
4.2. Temperature profile

The temperature profile at x = 0.5 has been plotted

for 2 undulations, Ra = 105 and amplitude = 0.05 with

/ as parameter (Fig. 11(a)–(c)). With the increase in /
from 0� to 90� (Fig. 11(a)) it is observed that the convec-

tion effects are diminishing at the lower half and a

boundary layer profile emerges [12]. With further in-

crease in / from 120� to 210� (Fig. 11(b)), the boundary
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layer profile gives way to a convection dominated pro-

file. When is in the range of 240� to 330�, convection ef-

fects are predominant. Fig. 11(d) is the plot of T with Ra

as parameter. With an increase in Ra, the boundary

layer thickness decreases because T attains bottom wall

temperature value in a shorter distance from the top

wall.

4.3. Nusselt number

4.3.1. Average Nusselt number (Nuav)

The variations of Nuav with / for the wavy wall are

plotted in Fig. 12(a)–(c). With amplitude 0.05 and

Ra = 105, Nuav decrease, then increase and finally

decrease with the increase of / for one, two and three

undulations (Fig. 12(a)). The negative sign implies that
heat is transferred from the domain to the surroundings.

It is observed that the number of undulations does not

have appreciable effect on Nuav. Fig. 12(b) and (c) give

the plot for amplitude 0.025 and 0.05 for one undulation

and three undulations, respectively. In both cases, the

amplitude does not have any appreciable effect on Nuav.

In all the three cases (Fig. 12(a)–(c), it is observed that the

minimum occurs for / = 300 and the maximum occurs

for / = 1800. Also to be noted that there is a valley

spreading for / � 1500�2400 (in all the cases) for

which the Nuav remains approximately same. This is

due to the similar isotherm patterns as shown in Figs.

6, 8, 10(f)–(i).

The Nuav vs. wave amplitude (k) are shown in Fig. 13

(a)–(c) for various Ra and undulations when / = 900.

For k = 0, there is no undulation. Nuav value is same
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forRa = 102–104 (Fig. 13(a)–(c). It increases forRa = 105

and 106. This is happening because conduction is the

mode of heat transfer for Ra up to 104 whereas advection

mode of heat transfer starts dominating with increase of

Ra = 105–106. This results in the increase of Nuav. This
Fig. 12. Average Nusselt number (Nuav) vs. /.
limit of Ra is exactly matching with the results of Sarris

et al. [12]. For one undulation case (Fig. 13(a)), Nuav in-

creases with wave amplitude for Ra = 102–106. In the

range Ra = 102–104, the gain in Nuav decreases with the

increase in Ra. The Nuav variation for Ra = 105 and 106
Fig. 13. Average Nusselt number (Nuav) vs. wave amplitude

(k).



Fig. 14. Stream trace and isotherm plots for Ra = 106, k = 0.1 and / = 90�.
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is different than those of 102–104. At high Ra the advec-

tion mode of heat transfer is affected by the waviness of

wall. Also there is a change of flow pattern. A typical

flow pattern at Ra = 106, k = 0.1 and / = 90� is shown

in Fig. 14(a)–(c) for one, two and three undulations.

The core of the cell adjacent to the wavy wall is breaking

into two smaller cells. This behaviour starts at Ra = 105
and more pronounced in the case of Ra = 106 and with

higher amplitude. Similar type of change of flow pattern

due to the presence of non-rectangular wall at Ra = 105

and above has been reported by Oosthuizen and Mona-

ghan [24]. The corresponding isotherms are shown in

Fig. 14(d)–(e). This may be the reason why Nuav is

decreasing with increase in k.
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Number of undulations

The variation of Nuav with wave amplitude for vari-

ous number of undulations are given in Fig. 15(a)–(d)

for Ra = 103, 104, 105 and 106, respectively. For all the

cases, Nuav increases from one undulation to two undu-

lations. However with further increase from two to three

undulations, Nuav decreases. This is due to the fact that

three undulation case is making the fluid to separate out

at the bottom undulation and thus opposing the heat

transfer. Thus increasing the number of undulations

from two to three has detrimental effect as far as heat

transfer is concerned. The Nuav values for two- and
Fig. 15. Average Nusselt num
three-undulations are less than the one-undulation case

for k = 0–0.026 and 0–0.066, respectively when

Ra = 106 (Fig. 15(d)). It has been observed that the right

side primary cell breaks into two smaller vortices when

Ra is increased from 105 to 106 (Fig. 14(a)–(c). This

may be the reason for this different behaviour.

Effect of amplitude (k)
When the amplitude is zero (i.e. a square cavity with-

out undulation), Nuav on the undulated wall is constant

up to Ra = 104 (conduction mode) and then increases

with increase in Ra (convection mode) (Fig. 16(a)–(c).
ber distribution with k.



Fig. 16. Average Nusselt number distribution for different amplitude.
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It is noticed that with a finite amplitude, Nuav decreases

as the advection mode starts playing a role. It then in-

creases with further increase of Ra giving rise to a local

minima. This may be due to the complex fluid-wavy wall

interaction. It is also to be noted that with increase in

amplitude, the range of Ra for which Nuav is constant

(conduction) decreases. The result is that even with small

Ra, Nuav is high if k is high. Effective heat transfer rate

can be increased with low Ra (the buoyancy effect is

small). For two undulations (Fig. 16(b)), similar trend

is observed and the magnitude of Nuav is more. How-

ever, the magnitude decreases for three undulations

(Fig. 16(c)) and earlier described in Fig. 15.
Top heated wall

The heat coming into the domain is dissipated by the

three cold walls. So the Nuav on this wall is an indication

of the amount of heat transfer through the domain. The

variation of Nuav for the heated wall with inclination an-

gle is shown in Fig. 17(a) for amplitude 0.05, Ra = 105

and three different number of undulations. It is observed

thatNuav is decreasing in the range 0�–90� from nearly 3.5

to a little less that 1.5. It is then increasing to 4.5 upto an

angle 270� and finally decreasing to the value at 0�. The
distribution lines are practically overlapping for one,

two and three-undulations. There is a distinct minimum

and maximum locations obtained corresponding to 90�
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and 270�, respectively. This is due to the abrupt change in

the isotherm patterns as shown in Figs. 6, 8, and 10.

Fig. 17(b) shows the variation of Nuav with Ra for

amplitude=0.05, / = 90�. With increase in Ra, there is

a drop of Nuav by 10% for two and three-undulations

and 7% for one-undulation. This drop may possibly be

attributed to the fluid flow structure which adversely

affets the heat dissipation from three cold surfaces.

4.3.2. Local Nusselt number (Nul) distribution

Effect of Ra

Nul vs. g distributions for various Ra are shown in

Fig. 18(a), Fig. 19(a) and 20(a) for one, two and three

undulations, respectively. With the increase of Ra, the

maximum Nul is increasing near the top (Fig. 18(a))

whereas it is decreasing near the bottom portion of the

wavy wall. As the advection dominates with high Ra,

Nul increases at the top portion of the wavy wall. At

the same time fluid velocity is high and it gets deflected
from the crest of the wall and thus at the bottom

portion, there is not much fluid circulation and Nul
decreases. For two undulations, there are two maxima

for Nul and for three undulations, there are three

maxima. The point to be noted is that at the uppermost

undulation, the largest Ra has the highest Nul value

whereas for bottom undulation, it has the lowest Nul
value which is in accordance with the above justification.
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Effect of /
The variation of Nul with / at step of 30� are shown

in Figs. 18(b) and (c), 19(b) and (c) and 20(b) and (c).

The Nul distribution value are consistently very close

to each other in the range / = 150–240�. This is due to
the similar isotherm pattern in this range (refer Section

4.1). They are appreciably higher also compared to those

values at other angles of variation. This is the reason

why the Nuav values are close to each other in this range

(Fig. 12).
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5. Conclusions

In this study, numerical results of natural convection

heat transfer in a two-dimensional enclosure subjected

to steady sinusoidal temperature boundary condition

on one wall and constant temperature on other three

walls are presented. One of the constant-temperature

wall is curved having undulation. The number of the

undulations has been varied from one to three. The

influence of amplitude, Ra, angle (/) on the flow pat-

terns and heat transfer characteristics in the enclosure

is examined in detail. From the results presented above,

the following main conclusions may be drawn.

• With the orientation angle (/), one convection cell

gradually transforms into two counter rotating cells

for all the undulation cases.

• For / = 90�, the temperature profile at x = 0.5 resem-

bles a boundary layer profile. The boundary layer

thickness reduces with increase in Ra. For other

angles, the shape of the profile depends upon the con-

vection strength.

• For all the type of undulation, maximum Nuav for the

wavy wall occurs in the range / = 150�–240� and

minimum Nuav occurs at / = 30�.
• For all finite amplitude, Nuav shows a minimum for

the range of Ra studied.

• For small Ra, it is possible to increase Nuav on the

wavy wall with increase of amplitude.

• With high Ra and large amplitude, the cell near the

wavy wall shows a different flow pattern.

• With increase in Ra, Nuav on the wavy wall decreases

with increase in amplitude.

• With increase in amplitude, the heat transfer on the

wavy wall decreases for three-undulations case com-

pared to one- and two-undulations cases.

• Local Nul on the wavy wall has higher value for

/ = 150�–240� compared to other angles of inclination.
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